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However...

Despite the increasingly larger graphs practitioners encounter, scalability of
graph analysis methods remains poor.

Betweenness Centrality Performance

Node count Runtime

100 5 milliseconds
1,000 270 milliseconds
10,000 4 minutes

100,000 42 minutes
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The Library

Implementation of a novel graph approximation approach, achieving
average 10-100x speedup with less than <15% error
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QuasiStableColors.Centrality.approx_betweenness_centrality — Function

approx_betweenness_centrality(
G::Graph,
q: :Number,
n_colors::Int,

Approximate betweenness centrality using a g-stable coloring with maximum error q or size n_colors,
whichever is smaller.

QuasiStableColors.Optimize.lifted_minimize — Function

lifted_minimize(
A,
b::Vector,
c::Vector,
q=0.0,
n_colors=Inf,

)

Approximate the linear program min ¢! z where Az > b,z > 0.

Uses a quasi-stable coloring with maximum error g or n_colors colors, whichever is smaller.

QuasiStableColors.Flow.lifted_maxflow — Function



Karate Club

W. W. Zachary. An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4):452—473, 1977.
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| V| =34,|E| =778
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QuasiStableColors.q_color — Method

g-color(
G::AbstractGraph{T},
q = 0.0,
h_colors = Inf,
weights::SparseMatrixCSC{<:Number,Int} = nothing,
special = Set{T}(),
warm_start = Vector{Vector{T}}(),

Compute a quasi-stable coloring for the graph G. Typically, you should set one of:

e : maximum g-error allowed

* n_colors: number of colors to use
Advanced, optional parameters:

 weights: edge weights to use

« weighting: whether to prioritize larger colors (i.e. with more members).
false to prioritize colors with the largest error, regardless of color size.

« warm_start: coloring to refine. If not provided, starts using coarsest
(single color) partitioning.

C = QSC.qg-color(g, g=1.0)

« special: node IDs which will always get

Quasi-stable coloring(color count=4, max g-error=1.0)



Karate Club
V| =34,|E| =78, g=3.0,|P| =6
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Quasi-Stable Coloring

A generalization of stable coloring.

DEFINITION. (Quast-stable Coloring) Call a coloring P = { P, ..., P, } quasi-
stable if, for some g > O:

Vi,j,Vx,y € P;: —q < |[N(x)NPj|-[N(y) NPj| <q

where N(v) denotes the neighbors of vertex v.

10
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Compression

Initial Graph Quasi-Stable Coloring Lifted Graph,
Quotient Graph

Adapted from
M. Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. PODS 2020, Portland, OR, USA, June

14-19, 2020, pages 1—16. ACM, 2020.
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Applications

(1) Max-flow/Min-cut  (2) Linear Optimization (3) Betweenness Centrality
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The Catch

Theorem: Computing a maximal quasi-stable coloring is NP-
complete, and similarly for any e-stable coloring.

13



Table 3: Summary of the linear programs used for evaluation.

Table 2: Summary of graphs used for evaluation All instances are from real problems.

Name Vertices Edges Real/ Source Name Rows Cols.  Non- SOI' Source
Sim. Zeros time
General evaluation gap15 6 331 22275 110700 22min [27
a Karate 34 75 R [10] nug08-3rd 19 728 20448 139008 100 @n 27
: supportcasel0 10713 1429098 4287094 31min |27
EX p e rl m e n ts OpenFlights e bR, bl ex10 69609 17680 1179680 24min [27
DsLp 317080 1049866 R (7] i
Centralit
Datasets and Setup > —
Astrophysics 18 772 198110 R 23
Facebook 22470 171002 R 26
Deezer 28 281 92752 R 38
Enron 36692 183831 R 21]
Epinions 75879 508837 R 36
Maximum-flow
Tsukuba0 110 594 506546 R 32]
Tsukuba2 110 594 500544 R 32]
Venus0 166224 787946 R 39
Venusl1 166224 787716 R 39
Sawtooth0 164 922 790296 R 39
Sawtooth1 164922 789014 R 39]
SimCells 903962 6738294 S 18]
Cells 3582102 31537228 R 18]
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Experiments
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Figure 7: Speed-accuracy trade-offs for three task types and 20 datasets. Runtime reported is end-to-end, including the time
taken for graph coloring, building an approximate instance of the problem and solving it.
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Experiments

Runtime and compression

ratios

Table 4: Runtime and compression ratios of quasi-stahle color-
ing vs. prior work (stable coloring [4,22]) for selected datasets.

Dataset Maxqg Meang Colors Compression Time
OpenFlights stable (g=0) 2 637 1.29:1  150ms
q=64 15.8 9 380:1  10ms
q=32  6.96 17 200:1 20ms
q=16 2.22 39 87:1 60ms
q=28 0.52 106 32:1  350ms
Epinions stable (g=0) 53 068 1.42:1 49s
q =64 4.42 71 1 000:1 2.39s
q=32 1.17 144 526:1 8.95s
q=16  0.79 316 240:1 40.5s
q=28 0.22 869 87:1 5ml9s
DBLP stable (g=0) 233 466 1.35:1 14m52s
q=64 11.94 21 15 000:1 2.28s
q=32 2.22 89 3 500:1 22.6s
q=16  0.39 373 850:1  6m39s
q=28 0.06 1513 210:1 2h38m
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Experiments

Q-Stable Coloring vs. Prior
Approximations

Table 1: Runtime comparison of g-stable colors vs. prior
approximations (Riondato-Kornaropoulos [37] and early-
stopping [33]) and exact algorithms (Brandes [5] and interior-
point solver [43]). Runtime to achieve a target approximation
quality is measured; target is correlation (p) with ground truth
values for centrality and relative error for linear optimization.
“x” is 20-minute timeout. Units in seconds, lower is better.

Betweenness centrality: ours, [37], and [5]

p=0.90 p=0.95 p=0.97 Exact
Ours Prior Ours Prior Ours Prior

Astroph. 0.13 15.2 1.03 414 | 249 61.1 223
Facebook 0.07 3.2 053 7.1 2.23 126 221

Deezer 005 36 1.11 7.2 8.56 1438 295
Enron 041 26 3.06 5.6 10,8 8.7 380

Epinions 0.18 17.1 3.15 365 7.95 58.2 2552
Linear optimization: ours, [33], and [43]

rel. err.=3.0 rel.err=2.0 relerr.=1.5  Exact
Ours Prior Ours Prior Ours Prior
qap15 3.20 112 491 524. | 114 X 1320
nug08. 540 1027. | 6.65 X 6.65 X 6 000
support.  0.51  143. 498 143. | X X 1860
ex10 0.247 795. 14.0 795. | 14.0 795. 1 440

17



Colors needed

Quasi-Stable Colors

Robust against perturbations

1000 I~ _@- stable

g-stable, g=4
750 L | — # of graph vertices
500 |
250
0 ]
0 | | | | | , | | | |
Original 1 2 4 8 16 32 64 128 256

Random edges added
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Aside: Julia for Academic Research

The Good
- Excellent fit with academic work patterns: rapid development cycle when testing ideas
- Progressive improvement for performance-critical components

- Ecosystem tooling allows for easily distribution, replication of work

The Bad

- Decision paralysis: ambiguity in library choice confusing for newcomers
- Limitations in tooling (CPU and memory profiling) make performance issues opaqgue

- Language conventions, software design patterns still developing (risk of anti-patterns)

19



Recap

Install the package:

Reference implementation at

https://github.com/mkyl/ @acBook-Pro ~> julia
QuasiStableColors.jl (@v1l.8) pkg> add QuasiStableColors

Got potential applications? Reach out!

kavalildcs.washington.edu
@moe kayali

20
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Recap

Install the package:

Reference implementation at

https://github.com/mkyl/ @acBook-Pro ~> julia
QuasiStableColors.jl (@v1l.8) pkg> add QuasiStableColors

Got potential applications? Reach out!

kavalildcs.washington.edu
@moe kayali

Questions?
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Algorithm

Algorithm 1: Computing an approximate partition over

COIOr refl nement algOrlth M |S nOt weighted graph G, with n colors or ¢ maximum error

practical for g-coloring. Data: G = (V,E), W : V x V — R*

Parameters: n € Z*, ¢ € Rxg
Result: P C P(V)

_ _ 1 P {V};
For stable coloring, all refinement » while |P| < n do
- : 3 ii,Lij ¢ maxy,cp, deg(v, P;), mingcp, deg(v, P;);
orders are equivalent and arrive at the @ | joY ) e e ) minaen deeln £
unigue such color. s | if maxErr < ¢ then
6 L break;
7 Cij « |[En (P; X Pj)l; // count edges
Not so for g-colors: choice of s | Erfweighed — Err@ G // element-wise product
“ . . . 9 i, € argmax; ; Errweighted; // witness
partitions to refine decides quality of w | threshold /U X L ;
coloring. Generally, many distinct b o (o) < threshold].
11 retain ¢ (¥ € £ | deglv, Fj) < thresholdy;
colors for a fixed value of g. 2| Peject < Pi\ Pretain
13 i P« P\{P;} VU {Pretam,Peject};

21



Algorithm

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error

’ Data: G = (V,E),W : VXV — R
ﬁ
Parameters:n € Z*, ¢ € Rxg

Result: P c P(V)

1 P {V};
[8, 8] » while [P| < n do
[1) 5] 3 Uij,Lij < maxy,ep, deg(o, Pj), Mg, ep, deg (v, Pj);
[4, 6] s | Erre—U-1I;

5 if max Err < ¢ then

6 L break:;

7 Cij « |[En (P; X Pj)l; // count edges
8 Erryeighted < Err © C; // element-wise product
9 i, j ¢ argmax; ; Erryeighted; // witness

10 threshold «— \/Ui j X Lij ;

// Split P; at threshold

11 Pretain < {v € P; | deg(v,Pj) < threshold};
12 Peject < P \ Pretain:

[min, max] degree 3 | PeP\{P}U {Pretains Peject}?

Quotient Graph

22



Algorithm

o =

Quotient Graph

degree range

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error

1

2

10

11

12

13

Data: G = (V,E),W:V xV — R*

Parameters: n € Z7, ¢ € R>g

Result: P c P(V)

P« {V}

while [P| < n do

Uij, Lij < maxyep, deg (o, Pj), Mg, ep, deg (v, Pj);
Err — U - L;

if max Err < £ then

L break:;
Cij « |[En (P; X Pj)l; // count edges
Erryeighted < Err © C; // element-wise product
i, j ¢ argmax; ; Erryeighted; // witness

threshold « /U;j X L;; ;
// Split P; at threshold
Pietain {v € P; | deg(v,Pj) < threshold};

Peject < P \ Pretain:
P« P\{P;} VU {Pretainspeject}?




Algorithm

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error

50 Data:G = (V,E),W:V XV — R*

EE— Parameters: n € Z7, ¢ € R>g
Result: P c P(V)
1 P {V};
O » while |P| < n do
10 40 3 Uij, Lij < maxyep, deg(wv, Pj), Mg, ep, deg (v, Pj);
4 Err — U - L;
5 if max Err < ¢ then
6 L break;
7 Cij « |[En (P; X Pj)l; // count edges
8 Erryeighted < Err © C; // element-wise product
9 i, j ¢ argmax; ; Erryeighted; // witness

10 threshold «— \/Ui j X Lij ;

// Split P; at threshold

11 Pretain < {v € P; | deg(v,Pj) < threshold};
12 Peject < P \ Pretain:

(weighted) degree range 13 | PeP\{P}U {Pretains Peject};

Quotient Graph
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Algorithm

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error

Data:G=(V,E),W: VXV = R"
Parameters: n € Z*, ¢ € Rxg
Result: P C P(V)
1 P« {V};
2 while |P| < n do
3 Uij,Lij < maxyep, deg(o, Pj), MiNgep, deg (v, Pj);
4 Err — U - L;

5 if max Err < ¢ then

6 L break:;

7 Cij « |[En (P; X Pj)l; // count edges
8 Erryeighted < Err © C; // element-wise product
9 i, j < argmax; ; Erryeighted: // witness

10 threshold « /U;j X L;; ;
// Split P; at threshold
11 | Pretain < {v € P; | deg(v, Pj) < threshold};

12 Peject «— P; \ Pretain:

Quotient Graph

witness selection 13 | PeP\{PA}U {Pretain, Peject};
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Algorithm

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error

Data: G=(V,E),W: VXV —R"
Parameters: n € Z1, ¢ € R>g
Result: P c P(V)
1 P {V};
2 while |P| < n do
3 Uij, Lij < maxyep, deg(wv, Pj), MiNgep, deg (v, Pj);
4 Err — U - L;

5 if max Err < ¢ then

6 L break:;

7 Cij « |[En (P; X Pj)l; // count edges
8 Erryeighted < Err © C; // element-wise product
9 i, j ¢ argmax; ; Erryeighted; // witness

10 threshold « /U;j X L;; ;
// Split P; at threshold
11 | Pretain < {v € P; | deg(v, Pj) < threshold};

12 Peject «— P; \Pretain§

Quotient Graph

witness selection 13 | PeP\{PA}U {Pretain, Peject};
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Algorithm

Algorithm 1: Computing an approximate partition over
weighted graph G, with n colors or ¢ maximum error
[3’ 4] Data: G = (V,E),W : VXV — R
EE— Parameters: n € Z7, ¢ € R>g
Result: P c P(V)
1 P {V};

2 while |P| < n do
{‘5\ [8’ 8] [1’ 5] 3 Uij, Lij < maxyep, deg (o, Pj), MiNgep, deg (v, Pj);
% 6\\/ 4 Err — U - L;
5 if max Err < ¢ then
6 L break:;
| 7 Cij « |[EN (P; X Pj)|; // count edges
[4 4] 8 Erryeighted < Err © C; // element-wise product
’ 9 i, ] ¢ argmax; ; E"rweighted? // witness
10 threshold « /U;j X L;; ;
// Split P; at threshold
. 11 | Pretain < {v € P; | deg(v, Pj) < threshold};
QuOtlent Graph 12 Peject & Pj \ Pretain:
iteration complete 3 | PeP\{P}U {PretanvPeject};
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Color Refinement

aka 7-dimensional Weisfeiler-Leman
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Color Refinement

aka 7-dimensional Weisfeiler-Leman

Note: Distinct from proper vertex coloring, chromatic number, etc.
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Color Refinement

aka 7-dimensional Weisfeiler-Leman
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Note: Distinct from proper vertex coloring, chromatic number, etc.

M. Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. PODS 2020, Portland, OR, USA, June
14-19, 2020, pages 1—16. ACM, 2020.
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Color Refinement

DEFINITION. (Stable Coloring) Call a coloring P = { P, ..., P, } stable if
Vi, j,Vx,y € P; : IN (x) ﬂPj| =|N(y) ﬂpj‘

where N(v) denotes the neighbors of vertex v.
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